PULSTAR UCN source: studying solid deuterium growth and evolution

E. Korobkina

NC State University

Outlines

- Brief reminder of PULSTAR source design and status
- Overview of test instrumentations
- Brief overview of runs
- Discussion: temperature dependence of crystal shapes and quality
- Conclusions and Outlook

Overview of PULSTART source design

Overview of PULSTART source design

Pulstar UCN source status update

- In 2015 we successfully completed cryogenic commissioning of the source before it is installed in the biological shield of the reactor, everything works as designed
- In 2016 we have added P/O convertor to complete cryogenic tests with ortho-deuterium
- From operational experience of other facilities we are aware of the crucial importance of the solid deuterium crystal properties for good source performance
- Therefore this year we installed special set-up for visual and temperature control of the deuterium crystal growth and performed several runs with different parameters.
- At present we are evaluating our data and preparing for the next round of solid deuterium growth
- summary of main results will be presented today

Pulstar UCN source status update

- In 2015 we successfully completed cryogenic commissioning of the source before it is installed in the biological shield of the reactor, everything works as designed
- In 2016 we have added P/O convertor to complete cryogenic tests with ortho-deuterium
- From operational experience of other facilities we are aware of the crucial importance of the solid deuterium crystal properties for good source performance
- Therefore this year we installed special set-up for visual and temperature control of the deuterium crystal growth and performed several runs with different parameters.
- At present we are evaluating our data and preparing for the next round of solid deuterium growth
- summary of main results will be presented today

SD2 monitoring system for visual control

• Graham Medlin designed and implemented a monitoring system which allows to observe D2-container by using camera outside cryostat

SD2 growing tests : instrumentation details

6

Overview of runs

1. Feb 23-26 condensation

- 2. Feb 27-Mar 4 annealing, **melting-refreezing**; evaporation
- 3. Mar 15- Mar 25 condensation
- 4. Mar 25 28 annealing, adjustment of cryogenic system
- 5. Mar 29-31 heat shooting
- 6. Apr 1-4 slow warming/annealing ; evaporation
- 7. April 11-13 condensation
- 8. April 25 condensation

Feb 23-26 condensation

- this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate
- 5.4K/ 8.2K/ 7.2K:
 - Small flow (0.3 l/m) produced dense multicrystall, optically opaque
 - Higher D2 flow >1 l/m produced snow-flake-like mass
- when T of container was increased (5.4K/ 11.2K/ 8.3K) and crystal annealed, D2 flow =>0.8 I/m results in visibly shiny surface

Feb 23-26 condensation

 this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate

• 5.4K/ 8.2K/ 7.2K:

- Small flow (0.3 l/m) produced dense multicrystall, optically opaque
- Higher D2 flow >1 l/m produced snow-flake-like mass
- when T of container was increased (5.4K/11.2K/8.3K) and crystal annealed, D2 flow =>0.8 I/m results in visibly shiny surface

Feb 23-26 condensation

 this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate

• 5.4K/ 8.2K/ 7.2K:

- Small flow (0.3 l/m) produced dense multicrystall, optically opaque
- Higher D2 flow >1 l/m produced snow-flake-like mass
- when T of container was increased (5.4K/11.2K/8.3K) and crystal annealed, D2 flow =>0.8 I/m results in visibly shiny surface

Feb 27-Mar 4 - melting-refreezing

- Melting &re-freezing is routine crystal conditioning procedure at LANL and PSI UCN sources
- it produces reasonable transparent crystal, with some crystal structure visible, no surprises here
- After cooling down to 5K , this crystal was melted and evaporated

Feb 27-Mar 4 - melting-refreezing

- Melting &re-freezing is routine crystal conditioning procedure at LANL and PSI UCN sources
- it produces reasonable transparent crystal, with some crystal structure visible, no surprises here
- After cooling down to 5K , this crystal was melted and evaporated

- Mar 15 condensation, no heaters, small cooling power, 9/ 17.5/ 17.5, 0.8 l/ m:
 - ideal transparent crystal
- Mar 15-16-18, evolution to blob:
 - amazing mobility and tendency for avoiding warmer surfaces
- Mar 16 condensation, with heaters on, 8.5/18/15K, 1 I/m
 - clear crystal

PSI 2016

- Mar 15 condensation, no heaters, small cooling power, 9/ 17.5/ 17.5, 0.8 l/ m:
 - ideal transparent crystal
- Mar 15-16-18, evolution to blob:
 - amazing mobility and tendency for avoiding warmer surfaces
- Mar 16 condensation, with heaters on, 8.5/18/15K, 1 I/m
 - clear crystal

- Mar 15 condensation, no heaters, small cooling power, 9/ 17.5/ 17.5, 0.8 l/ m:
 - ideal transparent crystal
- Mar 15-16-18, evolution to blob:
 - amazing mobility and tendency for avoiding warmer surfaces
- Mar 16 condensation, with heaters on, 8.5/18/15K, 1 I/m
 - clear crystal

- Mar 15 condensation, no heaters, small cooling power, 9/ 17.5/ 17.5, 0.8 l/ m:
 - ideal transparent crystal
- Mar 15-16-18, evolution to blob:
 - amazing mobility and tendency for avoiding warmer surfaces
- Mar 16 condensation, with heaters on, 8.5/18/15K, 1 l/m
 - clear crystal

- Mar 22 condensation, with heaters, 7.75/ 17/ 18.5-19, 1 l/m
 - transparent crystal
 - 1 cm diod covered
- Mar 24, 25 all probe sensors covered, about 1050 cc total
- Main conclusions from Mar run:
 - it is possible to grow optically good crystal from vapor at warmer temperatures and flow 0.8-1 l/m
 - need to be concerned about crystal shape evolution with time

- Mar 22 condensation, with heaters, 7.75/ 17/ 18.5-19, 1 l/m
 - transparent crystal
 - 1 cm diod covered
- Mar 24, 25 all probe sensors covered, about 1050 cc total
- Main conclusions from Mar run:
 - it is possible to grow optically good crystal from vapor at warmer temperatures and flow 0.8-1 l/m
 - need to be concerned about crystal shape evolution with time

- Accidental He flow oscillations on Mar 25
- Mar 29-31 heat shooting
- Conclusions: we need also to be concerned about crystal surface evolutions when temperature is not stable

- Accidental He flow oscillations on Mar 25
- Mar 29-31 heat shooting
- Conclusions: we need also to be concerned about crystal surface evolutions when temperature is not stable

PSI 2016

- Accidental He flow oscillations on Mar 25
- Mar 29-31 heat shooting
- Conclusions: we need also to be concerned about crystal surface evolutions when temperature is not stable

PSI 2016

- Accidental He flow oscillations on Mar 25
- Mar 29-31 heat shooting
- Conclusions: we need also to be concerned about crystal surface evolutions when temperature is not stable

April 11-13 condensation

- April 11-13 condensation, 8.3/ 16.2/13, 0.8 l/m
- attempt to reproduce Mar 15 condensation from scratch, unsuccessful, because
 D-return was nor taken into account and container was too cold
- very interesting run for discussion of crystal properties vs T and crystal shapes

April 11-13 condensation

- April 11-13 condensation, 8.3/ 16.2/13, 0.8 l/m
- attempt to reproduce Mar 15 condensation from scratch, unsuccessful, because
 D-return was nor taken into account and container was too cold
- very interesting run for discussion of crystal properties vs T and crystal shapes

April 11-13 condensation

- April 11-13 condensation, 8.3/ 16.2/13, 0.8 l/m
- attempt to reproduce Mar 15 condensation from scratch, unsuccessful, because
 D-return was nor taken into account and container was too cold
- very interesting run for discussion of crystal properties vs T and crystal shapes

Lessons learned: April 25 condensation

 April 25 condensation, 10-9/18/ 16.2, 0.8 l/m

• attempt to reproduce Mar 15 condensation from scratch, quite successful.

Temperature dependence of Crystal shapes and transparency

- The main question we want to answer to is what is temperature dependence of the crystal quality?
- We can not measure temperature distribution of the inner wall of SD2 container
- It possible to simulate it using our measured temperatures and reconstructed SD2 shapes

Shape reconstruction

Mar 15, Annealed overnight at 12K. High mobility

Shape reconstruction (about 350cc)

March 22

Shape reconstruction (1050cc vs 964cc)

March 25

April 13

April 11 simulation, D2 flow on and off

- 1cm temperature can be reproduced only when assuming that bottom circle is at 9.3K
- Transparent region start from above 12K

April 11 simulation, D2 flow on and off

- 1cm temperature can be reproduced only when assuming that bottom circle is at 9.3K
- Transparent region start from above 12K

• **Conclusion:** From SD2 NMR studies it is known that below 10K there is no vacancy diffusion, so this is where crystal preferably grows in presence of warmer region

April 25, 9.5/18/16.2,1cm=14.5K, about 340cc total

- 1cm temperature can be reproduced only when assuming that bottom circle is at 12K
- Conclusion: to grow transparent crystal, cryostat walls needs to be above 12K

Mar 22 condensation, 1cm=16K; 7.75/ 17/ 18.5-19K; from simulations bottom centre =14K;

N

- 1cm temperature can be reproduced only when assuming that bottom circle is at least 14K
- Conclusion: to grow really good transparent crystal, cryostat walls needs to be above 14K

Mar 22 condensation, 1cm=16K; 7.75/ 17/ 18.5-19K; from simulations bottom centre =14K;

- 1cm temperature can be reproduced only when assuming that bottom circle is at least 14K
- Conclusion: to grow really good transparent crystal, cryostat walls needs to be above 14K

Conclusions

- Both, transparency and shape of the crystal are very temperature dependent
- Not only condensation, but crystal evolution with time needs to be tested in real conditions.
- Strong gradients and temperature oscillations should be avoided
- UCN transport can be affected by different crystal shape and needs to be evaluated

Outlook

- 2017 :
 - another round of SD2 growth
 - install temporary shield
 - assemble cryostat and external neutron guide on the bio-shield
- 2018 :
 - first tests with neutrons on small reactor power

Our team

A. Young, P. Huffman, R. Golub, A. Hawari

Graham Medlin

Grant Palmquist

A. Cook and reactor staff

our new members: Kent Leung and Christian White (author of shape reconstruction slides)

International UCN Workshop, Mainz, 2016